
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272008292

Interactive texture design and synthesis from mesh sketches

Article in Frontiers of Computer Science (electronic) · April 2014

DOI: 10.1007/s11704-014-3285-5

CITATIONS

0
READS

370

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Manufacturing Services Collaboration View project

Lili Wang

beihang univeristy

47 PUBLICATIONS 169 CITATIONS

SEE PROFILE

Qinglin Qi

Beihang University (BUAA)

35 PUBLICATIONS 5,714 CITATIONS

SEE PROFILE

Wei Ke

Macao Polytechnic University

79 PUBLICATIONS 450 CITATIONS

SEE PROFILE

All content following this page was uploaded by Qinglin Qi on 13 March 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272008292_Interactive_texture_design_and_synthesis_from_mesh_sketches?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272008292_Interactive_texture_design_and_synthesis_from_mesh_sketches?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Manufacturing-Services-Collaboration?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lili-Wang-65?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lili-Wang-65?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lili-Wang-65?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinglin-Qi?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinglin-Qi?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beihang-University-BUAA?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinglin-Qi?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Ke-5?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Ke-5?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Ke-5?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinglin-Qi?enrichId=rgreq-e9a7815aff42b4e9431dea21c789cef9-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAwODI5MjtBUzo0NzE0MTEzMjUxODE5NTJAMTQ4OTQwNDYyNjMwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Interactive Texture Design and Synthesis from Mesh Sketches

Lili WANG 1,Qinglin QI 1, Yi CHEN 1, Wei KE 2, Aimin HAO 1

1 State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science & Engineering, Beihang
University, Beijing 100191, China

2 Macao Polytechnic Institute, Macao, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Abstract Geometry mesh introduces user control into
texture synthesis and editing, and brings more variations in
the synthesized results. But still two problems related
remain in need of better solutions. One problem is
generating the meshes with desired size and pattern
efficiently from easier user inputs. The other problem is
improving the quality of synthesized results with mesh
information. We present a new two-step texture design and
synthesis method that addresses these two problems.
Besides example texture, a small piece of mesh sketch
drawn by hand or detected from example texture is input to
our algorithm. And then a mesh synthesis method of
geometry space is provided to avoid optimizations cell by
cell. Distance and orientation features are introduced to
improve the quality of mesh rasterization. Results show that
with our method, users can design and synthesize textures
from mesh sketches easily and interactively.

Keywords Texture Synthesis, Texture Design,
Feature-based Method, Structural Texture

1 Introduction

Texture mapping is a technique that applies raster images on
the surface to enhance appearance of 3D model without
adding extra geometry details. It is a uniquely powerful
method in interactive computer graphics. Research efforts of
texture synthesis have produced the methods that generate
high-resolution texture algorithmically. Texture synthesis

Received August 09, 2013; accepted month dd, yyyy

E-mail: wanglily@buaa.edu.cn

methods can be classified as procedural or sample-based
methods. Procedural methods use, for example, turbulence
or Perlin noise functions to generate textures that have
repetitive patterns or self-similarities. Sample-based
methods, like ours, assemble textures from modified
versions of input patches. The quality of texture synthesis,
especially for the structural texture, still has some space to
improve. Geometry information based texture synthesis and
editing use geometry mesh to represent the shape and
distribution of the texture elements, which can provide more
cues to guide texture synthesis in the same or similar
patterns of the inputs, and produce some good results.

However, some problems related to geometry mesh based
texture synthesis and editing methods remain in need of
better solutions. One is the complex user inputs. For
synthesizing texture with the same or similar patterns as the
examples, the user is required to provide example textures
for elements, mesh patches for shape and arrangements, and
a large initial mesh for the optimization step to remove the
noticeable repetitions. Many other mesh patches are also
required if we want to obtain variable synthesized results.
The second problem is that the regular pixel-based
neighborhood matching and sub-texture methods in mesh
rasterization do not consider the distance and orientation
cues that the mesh provides, so usually they have high cost
of the best matching, which introduces the loss of texture
details and unacceptable artifacts in vision.

To addresses these two problems, we propose a two-step
method to help user synthesize and design the texture more
easily. The first step of our texture synthesis method is mesh
synthesis, which uses a small piece of mesh sketch as input
and generates a large texture mesh with the similar features

2
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

Fig. 1: The synthesized textures of Jackfruit (left 3 images) and Cracker (right 3 images) using the method proposed in this
paper. A heart and a butterfly patterns are added on the texture meshes to introduce diversifications of texture design and
synthesis.

Fig. 2: Texture meshes(bottom) synthesized from the input
mesh sketches (top).

and patterns as output. In this paper, mesh sketch refers to
the mesh drawn by hand; texture mesh refers to edge and
vertex based geometry mesh, and it will introduce some
constrains in the later process. The second step of our
method is mesh rasterization, which synthesizes patches
with shape and distribution cues provided by the texture
mesh. Because these synthesized patches are filled into cells
of the texture mesh, as same as rastering triangle, we call
this step as mesh rasterization.

Besides example texture, only a small piece of mesh
sketch drawn by hand is needed. User can also modify the
sketch on-line, and get many different results interactively.
Figure 1 shows the textures synthesized with two example
textures: Jackfruit and Cracker. 3 images on right also show
the texture diversification generated with some extra patterns
of mesh. We avoid complex user inputs by a mesh synthesis
step. A seamless mesh patch is constructed from the mesh
sketch, and then is tiled to generate a large texture mesh. A
parallel refining is used to remove the repetitions of the large
mesh. Figure 2 shows three texture meshes (bottom)
generated from the small input sketches drawn by hand
(top).

For the second problem, we introduce the distance and
orientation features to give constrains in mesh rasterization.
Distance feature indicates how far the pixel is from the
edges of the mesh, which will help to maintain arrangement
and basic shape for texture elements of inputs. Orientation
feature extends the neighborhood searching from fixed

Fig. 3: The result synthesized with orientation features (mid-
dle) keeps the similar details as the input example (left), the
details in the results without orientation features are blur
(right).

orientation domain to changeable one, which can reduce the
neighborhood matching cost, and avoid details loss in the
result texture. Figure 3 shows comparison among the input
example texture (left), the results with (middle) and without
using the orientation features (right).We also refer the reader
to the accompanying video.

The method we propose in this paper provides user an
easy and flexible way to design and synthesize textures with
the patterns in the user’s mind. Comparing with the previous
methods, our method has the following characters:
1. Besides example texture, user can provide mesh sketch
drawn by hand to constrain shape and distribution of
synthesized texture elements.
2. The mesh synthesis step is very fast, user can modify the
sketch and have a result texture mesh in real-time.
3. In the mesh rasterization step, we consider the distance
and orientation features of the pixel, which help the
synthesized results maintain more details of the example
texture.

2 Related Work

We target design and synthesis of structural textures from
input examples and patterns interactively, and the most

Front. Comput. Sci.
3

related work include feature-based texture synthesis,
element arrangement, patch tiling and real-time texture
synthesis. For more example-based texture synthesis
methods, one can check a state-of-the-art report in [1].

2.1 Feature-based texture synthesis

Features in example textures always contain the shape, scale,
orientation and color of the elements, so a lot of researches
focus on feature-guide texture synthesis.

Feature-based method [2] extracts a small feature map
containing some easy-detect structural features such as
curves and ridges from the example, and then uses the
feature matching and deformation to build a new big feature
map, which is used to guide texture synthesis. For
near-regular texture, user-assisted lattice is extracted from
example texture according to the regular tile, and geometric
deformation field is constructed to provide the geometry
data to lighting and shape deformation [3]. Features are also
used into texture diversification. Feature-based warping and
blending introduce the shape variations of texture elements,
and generate more complex textures with
diversifications [4]. Multiple feature maps are detected from
the example textures [5], and matched with warping function
to construct a simplicial complex for morphable
interpolation. In [6], the features morph using a level set
advection approach, and constrain the synthesis of texture
with the material. Compare to the a global morphing
transformation on the entire feature map, the method in [7]
interpolates the features in the local regions of feature maps,
and then synthesize the texture with blend patches.
Moreover, the texture feature can introduce not only the
spatial variations of texture, but also the temporal ones. The
features from highly dynamic fluid phenomena are captured,
and used to generate the dynamic textures in videos [8].
Another variation of feature-based texture synthesis is
constrained texture synthesis. The most reprehensive work is
Bala’s method [9]. Energy minimization is used to introduce
constrains from both examples and maps provided by the
users to the synthesis process. The details of the result
texture preserve good structure from the input constrains,
but it is not a real-time method.

Texture splicing [10] is the work closed to our method. It
extracted elements from the example texture, and
constructed displacement of distribution from both example
texture and new patterns to indicate the arrangement of
elements. The results of this method are very similar to ours,
but it had dozens of seconds pre-computation time to create

candidate sets for example textures. Our method is a
real-time one, which doesn’t require any pre-computation.

For texture with structural features, Risser [11]
introduced a multi-scale descriptor, and brought many
diversifications of the results while maintain global
structures. Kim [12] observed the symmetry properties of
the example texture, and build symmetry representations of
them, which can be used to transfer and process the patterns
in textures.

Our method is also a feature-based texture design and
synthesis method. Compare to the methods above,it avoids
complex user inputs, and maintains good features both in the
example texture and the mesh sketch. The extra patterns
added in the texture mesh make the texture design more
flexible.

2.2 Element arrangement

Feature map includes not only the shape, scale, orientation
and color information, but also arrangement cues for the
texture elements. The density and distribution of the texture
elements are considered into feature map generation in [4],
so the synthesized texture with this method is suited to
mimic the variations in the nature. The method in [6]
introduces material axis that works with feature map to
guide element arrangement.

Compare with the feature map, control map gives more
powerful constrains to element arrangement in higher level.
An input control map is used to indicate the arrangement in
some previous work [13–15]. Recently a texture synthesis
method using the multiple layers of control maps constructed
automatically from example texture is introduced in [16].

There are still some other methods to guide the element
arrangement. A local growth based procedural modeling
system is proposed to arrange the texture elements in [17]. It
focused on how to generate the arrangement with the similar
pattern of input reference, and considered less on the
pixel-level synthesis. The orientations of ridges on the 3D
surfaces also give some cues to the patterns of arrangement
in [18]. In [19], the author demonstrates the results using
flow fields into controllable synthesis of textures. More
complex arrangement based physical rules for discrete 3D
elements was introduce in [20], which considered the size,
shape, etc. properties of the individual elements, and gave
more reasonable layout of the elements.

In our method, the input mesh sketch can be used to indi-
cate and diversify the arrangement of the elements.

4
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

Fig. 4: Overview of the mesh sketches based texture synthesis pipeline.

2.3 Patch tiling

The main problem of patch-based texture synthesis is
removing the seams in tiling. A small set of Wang Tiles are
constructed from examples, and then the continuous textures
are created with these tiles stochastically [21]. Graphcut
uses error function to find the best boundary cut path with
least error in the overlapped patches, and fits the patches
seamlessly [14, 15]. For the irregularly shaped patches,
cutting and stitching patches to generate new texture images
with minimized visual discontinuity are discussed in [22].
Irregular patch growing on the 3D surface with the
optimization provides another solution to the seamless
tiling [23]. Kun Zhou etc. [24] proposed mesh quilting for
tiling 3D texture patches, and used triangle based mesh to
provide more general and flexible deformations. While our
goal is 2D texture synthesis and editing, our method exploits
edge based 2D mesh tiling and deformation because of its
simplicity, which only occupies very small part of the
computation in our method (<5%). Lasram [25] accelerated
the patch-based texture synthesis. The method starts from
the results with poor quality, and refine them with selecting
and stitching the patches in parallel. Compare to our
method, this method has good performance, but it doesn’t
allow the more intersections by users in the synthesis.

There are two steps in our method that use patches. One is
the construction of the texture mesh. A large seamless texture
mesh is generated by tiling a 2D mesh patch with considering
of a matching cost function and deformation of the edges.
The other is initialization of mesh rasterization, in which the
texture patches in the example texture are warped or scaled
to fit the cell of the texture mesh.

2.4 Real-time texture synthesis

Texture synthesis is a time consume task in computer
graphics, and researchers tried to present some real-time
solutions for it. One idea is using pre-computation. Analysis
on the example texture is executed in the pre-processing
phrase off line, and the neighborhood relations are stored

into a jump map, which will be indexed rapidly in the
run-time phrase for texture synthesis [26].

Another option for reducing the time cost is patch-based
method. Patch-based sampling with a local Markov random
field is a faster method than pixel-based method, and
generates high quality results [27]. Lefebvre [28] proposed
parallel method to synthesize the texture in real-time, but it
needs a few minutes to preprocess the example texture sized
with 64*64, or 128*128. Coordinate jitter is used to
introduce some diversification of the texture, which makes
the synthesis controllable. While the interactions provided
by this method aren’t intuitive enough for users such as
texture designers to use.

The most related work of our method is real-time texture
synthesis with image-mesh analogies [29]. Both these two
methods use 2D meshes to indicate the distribution of
texture elements, and raster the meshes to generate the
output texture with GPU. But our method has two
advantages over Dischler’s method. 1) We avoid the strict
user input of periodic arrangement map by a mesh synthesis
step, which allow more flexible user interactions to edit
textures. Moreover, our parallel mesh synthesis removes two
iterative procedures in texture-mesh optimization, and is
more efficient. 2) In mesh rasterization, distance and
orientation feature maps are added to preserve the details of
the example texture.

There exist some schemes to synthesize meshes, such as
Barla’s method in [30]. It analyzed input stroke patterns, and
then synthesized from elements to patterns, also added some
variations. It took 5 to 10 seconds to synthesize 2D patterns.
In our method, we tile the seamless mesh patches found
from mesh sketches, and then remove repetitions in the mesh
according to mesh refining. Compare to Barla’s method, our
texture mesh synthesis is more efficient due to patch tiling
(Ours only takes 3ms).

The goal of our method is to design and synthesize the
textures with the examples and the input mesh sketches
interactively. Thus we cannot rely on the pre-computation
off line. We combine the patch-based idea with parallel

Front. Comput. Sci.
5

computation on the geometry meshes, and achieve
interactive frame rates.

3 The algorithm

In our method, a texture is designed and synthesized with
two major steps : mesh synthesis and rasterization. In mesh
synthesis, a small piece of mesh sketch either drawn by hand
or detected from the example texture is used as input, from
which the seamless mesh patch is constructed and tiled
repeatedly to form a basic texture mesh with desired size and
pattern. We refine this texture mesh with vertex moving to
avoid the visible repetitions. Moreover, user can add extra
patterns on this mesh, and many interesting results are
achieved when the example texture has several texture
elements with different appearance. In mesh rasterization,
distance feature is determined for each pixel, and then used
to guide texture initialization. Orientation feature that
indicates the directions of edges is also computed to give
constrains for neighborhood matching in the synthesis. We
show all these steps in Figure 4.

3.1 Mesh Synthesis

Mesh synthesis is to generate the texture mesh with desired
size and pattern from the mesh sketch. Geometry mesh
extends the synthesis from image space into geometry space,
so some geometry methods for graphics primitive, such as
edge matching and mesh deformation, are used in our
method. In mesh synthesis, first we select a mesh patch with
smaller self-matching cost from the input mesh sketch as a
candidate. Second, we deform the edges of the candidate to
construct a seamless mesh patch, which is tiled repeatedly to
generate a large texture mesh. At last, a refining step is
applied to remove the noticeable repetitions in the texture
mesh. In this section, we start from some definitions of
matching cost, and then explain how to use them in the
seamless mesh patch construction. Texture mesh refining is
introduced at the last part of this section.

Edge Matching Cost
We refer the segments in mesh as edges. In order to

measure how one edge overlap with another edge, an edge
matching cost function is introduced. e1 and e2 are two
edges with the four end points P1

in, P1
out, P2

in and P2
out

(Figure 5). We call the red lines that the edges cross over as
reference boundaries. Thus, the matching cost c(e1, e2) of e2

and e1 is defined in Equation 1 when the two reference
boundaries are overlapped.

Fig. 5: Edges matching.

c(e1, e2) = (1+ ‖
−−−−−→
P1

inP2
out ‖)∗

(1 + λ) ∗ (‖ n(
−−−−−→
P1

inP2
out) − n(

−−−−−→
P1

inP2
out) ‖)

(1)

where n(·) is the normalize function of the vector, and ‖ · ‖
represents the length of the vector. λ is a weight parameter,
which indicates how the angle between e1 to e2 affects the
cost. The matching cost reaches to zero only if e1 coincides
with e2 entirely.

Boundary Matching
Boundary matching is to find a boundary with the smallest

matching cost for a given boundary. The matching cost of
two boundaries can be computed with the matching costs of
the edges crossing over them.

In figure 6, b1 and b2 are a pair of boundaries who have
the same length. m edges cross over b1 while n edges cross
over b2. If m is not equal to n, b1 doesn’t match b2 , and we
set their matching cost to some large values. Otherwise, the
matching cost is computed as follow(Equation 2):

c(b1, b2) =

n∑
i=1

c(ei
1, e

i
2)

n
(2)

Mesh Patch Self-matching
Mesh patch self-matching is to find a mesh patch from the

input mesh sketch that matches itself well with smaller cost
of matching.

If the mesh patch is tiled repeatedly, its right boundary will
match its left one, the top boundary will match the bottom
one, and vice versa. Thus, the cost function of patch self
matching can be written as Equation 3:

c(P) = c(ble f t, bright) + c(btop, bbottom) (3)

where ble f t, bright,btop and bbottom are the four boundaries of
the patch P.

Smaller matching cost means less seam in the result mesh
when we tile a patch repeatedly. We call the patch that has
zero self matching cost as seamless patch.

6
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

Fig. 6: Boundary matching.

Seamless Mesh Patch Construction
The seamless mesh patch is the basic unit to generate the

texture mesh for the output texture, and can be constructed in
two steps: candidate selection and edge deformation.

The candidate patch Pc is a piece of mesh cut from the
input sketch with smaller self matching cost. We crop several
rectangle patches from the sketch, and refer them as Pi (i = 1
to n). S is a set containing all Pi. Then, the self matching
costs of all Pi are calculated. The one with smallest matching
cost is used as the candidate for constructing the seamless
patch with Equation 4 .

Pc = arg min
i

c(Pi), Pi ∈ S (4)

In most cases, tiling the candidate directly cannot
generate a seamless texture mesh, i.e. the candidate mesh
need to be deformed before it is applied to tiling. The
vertices related to the candidate can be divided into two
groups: one is for the vertices of edges crossing over the
boundaries of the candidate (red vertices are outside of the
candidate, and purple ones are inside, see in Figure 7), and
the other is for the vertices that are inside of the
candidate(navy ones). For the vertices in the first group, we
connect them with the corresponding vertices on the edges
they match, and then move them half distances on the way to
the corresponding vertices. The positions of the vertices in
the second group are also updated to avoid artifacts. The
displacement dsp of the vertex v in the second group can be
computed as follow (Equation 5):

dsp(v) =

∑
k
ωkdsp(vk

in)∑
k
ωk

, vk
in ∈ Vin (5)

ωk =
1

‖ v − vk
in ‖

(6)

where Vin is a set that contains all the purple vertices vk
in of

the candidate, ωk is an inverse of the distance between v and

Fig. 7: A mesh patch: green segments are the edges crossing
over the boundaries of the patch, red and purple vertices are
the end points of green edges, the navy vertices are inside of
the patch.

vk
in, and used as the weight for the displacement dsp(vk

in) of
vk

in.
After mesh deformation, the seamless mesh patch is tiled

to generate a large texture mesh for the output texture.
Texture mesh refining
There are a lot of repetitions in the texture mesh because

there is only one patch for tiling. Moving the vertices in the
texture mesh with considering the structure of the sketch can
remove most repetitions in the texture mesh and preserve the
local features of user input.

Several non-overlapped round disks are selected randomly
from the input mesh sketch. We refer the set containing all
vertices qi inside the disk Dr as S . Then we put the disks on
the texture mesh, and the vertices in the texture mesh touched
by the disks will be moved. For a given vertex p touched by
Dr, its displacement is determined by Equation 7.

dsp(p) = w ∗

∑
i

wi ∗
−−→pqi∑

i
wi

+ R, qi ∈ S ′(p, r) (7)

wi =
1

‖
−−→pqi ‖

(8)

where S ′(p, r) is a sub-set of S , and only includes qi inside
the neighborhood of p with r radius. wi is weight that is
inversely proportional to the distance from p to qi. w is a
scale factor of the displacement. R is a very small
displacement generated randomly.

Several iterations of mesh refining can be applied for the
more natural texture mesh.

3.2 Mesh Rasterization

Distance and orientation maps

Front. Comput. Sci.
7

Fig. 8: The distance map (middle) and the orientation map
(right) constructed from the texture mesh (left).

Distance and orientation features determined from the
texture mesh introduce some constrains in mesh rasterization
for better results. Each pixel in the output texture has its own
distance and orientation features, so the distance and
orientation maps for the output texture are constructed. We
raster the texture mesh into a two-value bit mask C with 1
and 0, 1 means edges and 0 means background. C is as the
same size as that of the output image.

For every pixel in the output texture, its distance feature
represents the distance from the pixel to the nearby edges in
the corresponding location of the texture mesh. The distance
feature D(p) of a given pixel p can be determined by the
equations below (Equation 9, 10):

D(p) =

∑
i

g(‖ −−→ppi ‖)C(pi)∑
i

g(‖ −−→ppi ‖)
, pi ∈ N(p) (9)

g(d) =
1
√

2πδ2
e−d2/(2δ2) (10)

where N is the set containing all the pixel pi in the neighbor-
hood of p, g(d) is the Gaussian function for d. δ is a parame-
ter of Gaussian function.

Orientation feature represents the direction that the pixel
in the output texture pointing to its nearest edge, which
locates at the corresponding place in the texture mesh. The
orientation feature

−−−→
V(p) for a pixel p is computed as follow

(Equation 11, 12):

−−−→
V(p) =

∑
i

w(pi)−−→ppi∑
i

w(pi)
, pi ∈ N(p) (11)

w(pi) =
D(pi)

‖
−−→ppi ‖

(12)

where −−→ppi represents the vector from p to pi, and w is a
weight, which can be computed as Equation 12.

Figure 8 shows the distance map (middle) and orientation
map (right) computed from the texture mesh (left) with our
method.

Patch Initialization

Fig. 9: Edge initialization, from left to right: the distance
map for the example texture, the example texture, the distance
map for the result texture, the result texture with edges initial-
ized.

Fig. 10: Radial warping for patch initialization

Initialization is to improve the quality of the synthesis.
The pixels in the output texture corresponding to the 0-value
region and non-zero region (edge region) of the distance
map are initialized separately.

The distance map of the example texture is computed
first. Then, for a given pixel p of the output texture
corresponding to the non-zero value pixel in its distance
map, the pixel q in the example texture with the most similar
distance feature is found, then q’s color will be used to
initialize p (See Equation 13 and Figure 9).

q = arg min
i

(D(p) − D(qi)) (13)

In order to obtain a better initialization for the pixels of
the output texture corresponding to 0-value region in its
distance map, we classify the example textures into two
categories, which will be initialized with different methods.
Elements in the textures of the first category are not sensitive
to deformation, i.e. the elements can be stretched to fit the
shape of the texture mesh. While the elements in the textures
of the second category have obvious structural features,and
we scale these elements overall to preserve their features.

We refer texture patches as pixel sets in both the example
texture and the output texture, which are surrounded by the
edges of the corresponding meshes. For a given patch Pr

in the output texture, a patch Pe from the example texture
is found randomly. Radial warping is used to initialize Pr

for the textures in the first category. The centers cr and ce

8
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

Fig. 11: Overall scaling for patch initialization

of Pr and Pe are aligned together. For each pixel p in Pr

corresponding to the 0-value region in the distance map, we
connect p with cr, and then extend it along the vector −−→cr p
to intersect with the edge in the corresponding mesh. If the
intersection is represented as pe, the ratio ||cr p||/||cr pe|| and
the direction of −−→cr p are used to index color of q from the
example texture as in Figure 10.

For the texture in the second category, a circumcircle Co

of Pr and an incircle Ci of Pe are constructed. We refer R
and r as the radius of Co and Ci. The overall scaling with the
coefficient r/R is used to initialize the pixels in Pr

corresponding to 0-value region in its distance map (See in
Figure 11).

Although our method can also integrate more complex
initialization, we adapted these radial warping based
methods due to their fast computation. Moreover, the color
map as in Figure 12 can be used to generate many more
interesting results. Color map (left) is a map that use
different colors to indicate the elements with different
features of the example texture. Users can add extra patterns
to the texture mesh (middle and right) by setting the colors.
In patch initialization, for a given a Pr with a mesh color,
only Pe with the same color in color map can be copied or
warped.

Pixel synthesis
Pixel-based synthesis is adapted to refine the results of

initialization. In regular neighborhood matching algorithm,
the neighborhood of a pixel is constructed with a fixed
orientation as in Figure 13 (middle). But for structural
texture, the appearance of patch is often related to the shape
of its texture mesh. Because the orientation feature for each
pixel represents the direction pointing to its nearest edge in
the mesh, we encode this feature into neighborhood
construction. First, for the pixels in both the example texture
and the output texture, the square neighborhoods oriented
according to the orientation vectors in their orientation
feature map are built (left and right). Then, the least cost

Fig. 12: Color map for the example (left), for the result tex-
ture with heart pattern (middle), for the result texture with
butterfly pattern (right).

Fig. 13: The neighborhood with changeable orientation
for the example texture (left) and the matching neighbor-
hood in our method (right) compare to regular neighborhood
searched (middle).

matching based on these changeable orientation
neighborhood is used into the synthesis.

In order to accelerate the synthesis, the matching areas in
the example texture are localized for edges region and 0-value
region respectively. The iterative process of synthesis can
also be used to improve the quality of the output texture.

4 Results and discussion

In this section we discuss the quality of the textures
synthesized by our method, report performance
measurements, and discuss the limitations of our method.

4.1 Quality

First, we have tested our algorithm to find some candidates
of seamless patches from the user input sketches. Figure 14
shows 9 seamless candidates (in the black rectangles)
cropped from 9 different sketches drawn by hand, which
indicate if length of mesh edge is 1/3 less than the size of
mesh sketch, the candidates have reasonable sizes to
construct the seamless patches.

Some parameter variations introduce the diversifications
of the texture mesh. The most important one is r in Equation
7. It refers to the radius of the neighborhood for the vertex of
texture mesh. The other vertices inside of this neighborhood
influence the displacement computation of the vertex in the

Front. Comput. Sci.
9

Fig. 14: the candidates of the seamless patches.

mesh refining step. Using smaller r causes more regular
texture mesh, while using larger r leads to more natural
texture mesh (See Figure 15).

Then we have applied our technique to generate several
textures: Jackfruit (Figure 1, left), Cracker (right), Pineapple
(Figure 16, row 2), Bricks (row 3), Mosaic (row 4), Grid
(row 5) and Standard (row 6). For each texture in Figure 16,
3 mesh sketches(row 1) are used to guide the synthesis. The
results demonstrate that our method preserves both the
features of element from the example textures and the
structures of the input mesh sketches. No obvious artifacts
are visible.

The orientation features for the pixels help us to maintain
the details in the synthesis. We compare the results with and
without considering the orientation features in Figure 3. The
result of our method (Figure 3, middle) contains the similar
details as the example texture (left). The blurred appearance
is showed in the result of the regular neighborhood method
(right).

The extra patterns can be added into the texture mesh,
which bring more variations into texture design and
synthesis. For Cracker in Figure 1 (right), different colors
are used in the color map of the example texture (Figure 12
left) to point out the different types of texture elements: the
hole, the brown region and the origin region of crackers.
User can assign the patterns in the color map of the texture
mesh (middle, right), which results in different appearances
of the synthesized textures. Another example is showed in
Figure 17.

Moreover, our method can apply to not only structural

(a) (b) (c) (d)

Fig. 15: Texture meshes generated with the parameter r vari-
ation.(a)Input mesh sketch,(b)(c) and (d)Texture mesh gener-
ated with r = 5,15,25.

textures, but also non-structural textures. For non-structured
textures, the only process to be changed is generating the
sample mesh randomly. Figure 18 shows some results for
the textures with statistic characters, such as Sands (left) and
Marble (right). No visible seams can be seen.

4.2 Performance

Performance was measured on an Intel Core i7-2600
3.4GHz PC with an NVIDIA GeForce GTX 780, 1,280 MB
graphics card, 4G RAM. Except mesh synthesis, all steps in
our algorithm are implemented on GPU with CUDA 4.0.
According to the CUDA thread organization, the
computation can be divided into 3 kernels.

Kernel 1 is for distance and orientation maps
construction, and edge initialization for each pixel of the
result texture; Kernel 2 is initializing the region in the result
texture corresponding to 0-value region in the distance map;
Kernel 3 is synthesizing and refining the pixels in the output
texture.

We do the performance test on the textures including
Jackfruit, Cracker, Pineapple, Bricks, Mosaic, Grid and
Standard. The resolution of the input example is 128*128,
and the outputs have two different resolutions: 128*128 and
256*256. For 128*128 case, our method takes about 2ms for
mesh synthesis, about 62ms to initialize the result texture
and about 64ms to refine the pixels. For 256*256 case, the
time cost of each step is: 4ms, 95ms and 257ms. The time

10
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

Fig. 16: Synthesis results for Pineapple(row 2),Bricks (row
3), Mosaic (row 4), Grid (row 5) and Standard (row 6). 3
mesh sketches(row 1) are used in synthesis.

difference of each step for the different textures is less than
3ms. The results indicate that the performance of our
method is not sensitive to different meshes and texture
patterns. Thus, our method can be used to design and
synthesize the structural texture interactively.

Texture splicing[10] has some similarities with our
method. It also generates a new texture with the texture A’s
elements and B’s distribution. However, texture splicing
does not allow user interactions in the synthesis process
directly. Besides pre-computation part, texture splicing has
three steps: mapping creation from one distribution to
another, deformation and refinement, which take almost the
same computation cost as the mesh rasterization of our
method. But foreground background separation in
pre-computation part is time consumed. It takes 10 times as
long as all other steps of texture splicing. Moreover, the
quality of foreground and background detected seriously

Fig. 17: Mosaic texture with square (middle) and smile face
patterns (right) generated from the input example (left).

Fig. 18: Synthesis results for non-structural texture: Sands
(left) and Marble (right).

undermine the quality of the result texture. While, our
method uses drawing mesh sketch, a very simple interaction
provided by users, to replace the strict detection of texture
splicing, and avoids a long pre-computation.

4.3 Limitation

The texture mesh used in our method constrains the
locations where the texture elements should be arranged, and
for each cell in the mesh, only one element is put. Thus, our
method cannot be applied to the texture such as falling
leaves, fruits piles because of the overlap between the
elements. Another limitation is that for the target texture
having curved arranged elements,the quality of synthesis
will decrease. This is because the curves are approximated
by the segments in both the mesh sketch and the texture
mesh, and the texture elements are arranged along the
segments, see in Figure 19.

5 Conclusions and Future Work

We present a novel interactive texture design and synthesis
method in this paper. Besides example textures, only mesh
sketches drawn by hand or detected from the example
textures are needed as inputs, which avoids the complex
inputs from users. The texture mesh with desired size and

Front. Comput. Sci.
11

Fig. 19: The example texture (left) with curved arrangement
are compared with the result of our method (right).

pattern is synthesized from the mesh sketch. Distance and
orientation features related to the texture mesh are
introduced into the mesh rasterization for reducing the
matching cost for pixels. Our method archives interactive
design and synthesis because of parallel computation of
mesh rasterization.

One possible direction of future work is to extend our
method from one example texture and one mesh sketch input
to the multiple example textures and mesh sketches, which
will bring more variations in texture design and synthesis.
Another future work is to alleviate the limitation of curve
arrangement discussed above. Curved edges will be
considered in the synthesis of texture meshes. After we get
the refined texture mesh, the segment edges should be
replaced with curve edges, which will introduce the
discontinuity between two edges. Bezier or B-spline may be
used to smooth the edge pairs.

Acknowledgements This work was supported by the National Natural
Science Foundation of China through Projects 61272349, 61190121 and
61190125, by the Macao Science and Technology Development Fund
through Project 043/2009/A2, by the National High Technology Research
and Development Program of China through 863 Program NO.
2013AA01A604.

References

1. Wei L Y, Lefebvre S, Kwatra V, Turk G. State of the art in example-

based texture synthesis. In: Eurographics ’09 State of the Art Report

(STARs). 2009, 93–117

2. Wu Q, Yu Y Z. Feature matching and deformation for texture synthesis.

ACM Transcations on Graphics, 2004, 23(3): 362–365

3. Liu Y X, Lin W C, Hays J H. Near-regular texture analysis and manip-

ulation. ACM Transcations on Graphics, 2004, 23(3): 368–376

4. Zhang J, Zhou K, Velho L, Guo B, Shum H. Synthesis of progressively-

variant textures on arbitrary surfaces. ACM Transcations on Graphics,

2003, 22(3): 295–302

5. Matusik W, Zwicker M, Durand F. Texture design using a simplicial

complex of morphable textures. ACM Transactions on Graphics, 2005,

24(3): 787–794

6. Ray N, Levy B, Wang H, Turk G, Vallet B. Material space texturing.

Computer Graphics Forum, 2009, 28(6): 1659–1669

7. Ruiters R, Schnabel R, Klein R. Patch-based texture interpolation.

Computer Graphics Forum, 2010, 29: 1421–1429

8. Narain R, Kwatra V, Kim T, Lee H, Carlson M, Lin M C. Feature-

guided dynamic texture synthesis on continuous flows. In: Eurograph-

ics Symposium on Rendering/Eurographics Workshop on Rendering

Techniques. 2007, 361–370

9. Ramanarayanan G, Bala K. Constrained texture synthesis via ener-

gy minimization. IEEE Transactions on Visualization and Computer

Graphics, 2007, 13(1): 167–178

10. Liu J PY. W, Xue S, Tong X, Kang S B, Guo B N. Texture splicing.

Computer Graphics Forum, 2009, 28(7): 1907–1915

11. Risser E, Han C, Dahyot R, Grinspun E. Synthesizing structured image

hybrids. ACM Transactions on Graphics, 2010, 29(4): 85:1–85:6

12. Kim V G, Lipman Y, Funkhouser T. Symmetry-guided texture syn-

thesis and manipulation. ACM Transactions on Graphics, 2012, 31(3):

22–36

13. Zhou H, Sun J, Turk G, Rehg J M. Terrain synthesis from digital el-

evation models. IEEE Transactions on Visualization and Computer

Graphics, 2007, 13(4): 834–848

14. Kwatra V, Schodl A, Essa I, Turk G, Bobick A. Graphcut textures :

Image and video synthesis using graph cuts. ACM Transactions on

Graphics, 2003, 22(2): 277–286

15. Wei L Y, Han J W, Zhou K, Bao H J, Guo B N, Shum H Y. Inverse

texture synthesis. ACM Transactions on Graphics, 2008, 22(3): 1–9

16. Rosenberger A, Cohen-Or D, Lischinski D. Layered shape synthesis:

automatic generation of control maps for non-stationary textures. ACM

Transactions on Graphics, 2009, 28(5): 22–30

17. Ijiri T, Mech R, Igarashi T, Millei G. An example-based procedural

system for element arrangement. 2008, 27(2): 429–436

18. Xu K, Cohen-Or D, Ju T, Liu L G, Zhang H, Zhou S Z, Xiong

Y S. Feature-aligned shape texturing. ACM Transactions on Graphics,

2009, 28(5): 1–7

19. Kwatra V, Essa I A, Bobick A F, Kwatra N. Texture optimization

for example-based synthesis. ACM Transactions on Graphics, 2005,

24(3): 795–802

20. Ma C Y, Wei L Y, Tong X. Discrete element textures. ACM Transac-

tions on Graphics, 2011, 30(4): 1–10

21. Cohen M F, Shade J, Hiller S, Deussen O. Wang tiles for image and

texture generation. ACM Transactions on Graphics, 2003, 22(3): 287–

295

22. Dong F, Lin H, Clapworthy G. Cutting and pasting irregularly shaped

patches for texture synthesis. Computer Graphics Forum, 2005, 24(1):

17–26

23. Praun E, Finkelstein A, Hoppe H. Lapped textures. In: Proceeding

of the 27th annual conference on Computer graphics and interactive

techniques. 2000, 465–470

24. Zhou K, Huang X, Wang X, Tong Y Y, Desbrun M, Guo B N, Shum

12
Lili WANG et al. Interactive Texture Design and Synthesis from Mesh Sketches

H Y. Mesh quilting for geometric texture synthesis. ACM Transactions

on Graphics, 2006, 25(3): 690–697

25. Lasram A, Lefebvre S. Parallel patch-based texture synthesis. In:

Proceeding of the 4th ACM SIGGRAPH/Eurographics conference on

High-Performance Graphics. 2012, 115–124

26. Zelinka S, Garland M. Towards real-time texture synthesis with the

jump map. In: Proceeding of Eurographics Symposium on Render-

ing/Eurographics Workshop on Rendering Techniques. 2002, 99–104

27. Liang L, Liu C, Xu Y Q, Guo B, Shum H. Real-time texture synthe-

sis by patch-based sampling. ACM Transactions on Graphics, 2001,

20(3): 127–150

28. Lefebvre S, Hoppe H. Parallel controllable texture synthesis. ACM

Transactions on Graphics, 2005, 24(3): 777–786

29. Dischler J M, Zara F. Real-time structured texture synthesis and editing

using image-mesh analogies. The Visual Computer, 2006, 22(9-11):

926–935

30. Barla P, Breslav S, Thollot J, Sillion F, Markosian L. Stroke pattern

analysis and synthesis. Computer Graphics Forum, 2006, 25(3): 690–

697

Lili Wang received the Ph.D. degree

from Beihang University, Beijing, Chi-

na, where she works as an assistan-

t professor and an associate professor

at School of Computer Science and En-

gineering from 2005 and 2007. She is

also a researcher at the State Key Lab-

oratory of Virtual Reality Technology

and Systems. Her interests include the real-time rendering, realistic

rendering, global illumination, soft shadow, and texture synthesis.

Qinglin Qi, born in 1989, is Mas-

ter Candidate in the Computer Science

School and the State Key laboratory

of Virtual Reality Technology and Sys-

tems, Beihang Universitry. His cur-

rent research interests include comput-

er graphics and texture synthesis.

Yi Chen, born in 1987, is Master

graduated from the Computer Science

School and the State Key laboratory

of Virtual Reality Technology and Sys-

tems, Beihang Universitry. His main

research interests include 3D graphics

rendering, computer graphics and tex-

ture synthesis.

Wei Ke is a researcher and lecturer of

Macao Polytechnic Institute. He re-

ceived his PhD from School of Com-

puter Science and Engineering, Bei-

hang University. His research interest-

s include programming languages, for-

mal methods, tool support for object-

oriented and component-based system-

s, and virtual reality applications. His

recent research focuses on programming tools, programming envi-

ronments and collaboration platform architectures.

Aimin Hao is a professor in the Com-

puter Science School and the Associate

Director of the State Key laboratory

of Virtual Reality Technology and Sys-

tems at Beihang University. He got his

BS, MS, and PhD in Computer science

at Beihang University. His research in-

terests are on virtual reality, computer

simulation, computer graphics, geometric modeling, image process-

ing, and computer vision.

View publication statsView publication stats

https://www.researchgate.net/publication/272008292

