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Abstract— Plant disease diagnosis is very critical for agricul-
ture due to its importance for increasing crop production. Recent
advances in image processing offer us a new way to solve this issue
via visual plant disease analysis. However, there are few works
in this area, not to mention systematic researches. In this paper,
we systematically investigate the problem of visual plant disease
recognition for plant disease diagnosis. Compared with other
types of images, plant disease images generally exhibit randomly
distributed lesions, diverse symptoms and complex backgrounds,
and thus are hard to capture discriminative information. To facil-
itate the plant disease recognition research, we construct a
new large-scale plant disease dataset with 271 plant disease
categories and 220,592 images. Based on this dataset, we tackle
plant disease recognition via reweighting both visual regions
and loss to emphasize diseased parts. We first compute the
weights of all the divided patches from each image based on the
cluster distribution of these patches to indicate the discriminative
level of each patch. Then we allocate the weight to each loss
for each patch-label pair during weakly-supervised training to
enable discriminative disease part learning. We finally extract
patch features from the network trained with loss reweighting,
and utilize the LSTM network to encode the weighed patch
feature sequence into a comprehensive feature representation.
Extensive evaluations on this dataset and another public dataset
demonstrate the advantage of the proposed method. We expect
this research will further the agenda of plant disease recognition
in the community of image processing.
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I. INTRODUCTION

PLANT diseases cause severe threats to global food secu-
rity by reducing crop production all over the world.

According to the statistics, about 20%-40% of all crop losses
globally are due to plant diseases [1]. Therefore, plant disease
diagnosis is critical to the prevention of spread of plant
diseases and reduction of economic losses in agriculture.
Most of the plant disease diagnosis methods heavily rely on
either the molecular assay or plant protector’s observation.
However, the former is complicated and constrained to cen-
tralized labs while the latter is time-consuming and prone to
errors. Currently, image-based technologies are being widely
applied to various interdisciplinary tasks via deciphering visual
content, e.g., medical imaging [2], food computing [3] and
cellular image analysis [4]. Benefitting from recent advances
in machine learning, especially deep learning [5], we assert
that plant image analysis and recognition can also provide a
new way for plant disease diagnosis. Meanwhile, the applica-
tions in visual plant disease diagnosis conversely promote the
development of image processing technologies.

The research and exploration on plant image analysis in this
field have begun to develop, such as aerial phenotyping [6]
and fingerprinting of leaves [1]. However, these methods
heavily rely on either expensive devices or complex molecular
technology, and thus are not easily popularized. Recently,
some works [7]–[12] adopt deep learning methods for plant
disease recognition. However, most of them directly extract
deep features from plant disease images without consider-
ing characteristics of the task. In addition, these works are
restricted to small datasets with fewer categories and simple
visual backgrounds.

According to our survey, there are mainly three distinctive
characteristics for plant disease images taken in real-world
scenarios. (1) Randomly distributed lesions. The foliar
lesions probably randomly occur in the plant leaves. As shown
in Fig. 1 (a), the cherry fungal shot hole disease is distributed
in many different parts of the leaf, including the top, left and
right positions. Because deep convolutional neural networks
trained with image level labels only tend to focus on the
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Fig. 1. Some plant disease samples with different characteristics: (a) Ran-
domly distributed lesions. (b) Diverse symptoms. (c) Complex backgrounds.
The diseased parts are annotated by red boxes.

most discriminative parts while missing other object parts,
as claiming in [13], many lesions are easy to be neglected.
(2) Diverse symptoms. Even for the same plant disease, there
are probably various visual symptoms on the plant leaves at
different time periods. As shown in Fig. 1 (b), due to different
degrees of infection, the allium fistulosum black spot shows
different symptoms in different leaves of the same plant. The
middle leaf is severely infected while the others appear to be
mild. The appearances vary considerably in different infected
stages, leading to large intra-class variations. (3) Complex
backgrounds. There usually exist various background clutters
in real-world scenarios. As shown in Fig. 1 (c), there are dense
leaves and any other irrelevant objects in the background.
In contrast, the disease symptoms are not salient, making plant
disease recognition more difficult.

To advance the plant disease recognition research in agri-
cultural image processing, we collect a large-scale plant
disease dataset Plant Disease Dataset 271 (PDD271) with
220,592 plant leaf images belonging to 271 plant disease
categories. To the best of our knowledge, this dataset is
the first large-scale plant disease dataset that is meaningful
for image processing research in the agricultural field. Some
image samples are shown in Fig. 2 while Fig. 3 shows the
number of images per category, sorted in decreasing order in
different categories. Pie chart in Fig. 3 indicates the overall
balance among the three macro-classes, no matter in terms of
category number or image number per category. All the images
are taken in real-world scenarios with different conditions.

Taking the characteristics of the plant disease image into
consideration, we tackle visual plant disease recognition
via reweighting both visual regions and loss. Particularly,
considering randomly distributed lesions, we explore the
multi-scale strategy by dividing the plant disease images into
non-overlapping patches, and compute the weights of these
patches according to the cluster distribution of these patches in
order to indicate the discriminative level of each patch. By set-
ting different weights to different patches, we enhance the
influence of patches with diseased symptoms and reduce
the interference of irrelevant patches. We further allocate
the weight to each loss for each patch-label pair during
weakly-supervised training for diseased parts learning. Finally,
we extract patch features from the network trained with
loss reweighting and adopt a LSTM network to encode the
weighted patch feature sequence into a comprehensive feature
representation.

In summary, we make the following main contributions:
(1) We conduct for the first time the systematical investiga-

tion and analysis of the problem of plant disease recognition
in the community of agricultural image processing.

(2) We propose a novel framework, which can explore
a multi-scale strategy and reweight both visual regions and
the loss to emphasize discriminative diseased parts for plant
disease recognition.

(3) We collect the largest labeled plant disease dataset
PDD271 with 271 plant disease categories and 220,592 images
to date and conduct extensive evaluations on newly proposed
PDD271, demonstrating the effectiveness of our method.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the con-
struction of PDD271. Section IV elaborates the proposed
plant disease recognition framework. Experimental results and
analysis are reported in Section V. Finally, we conclude the
paper and give the future work in Section VI.

II. RELATED WORKS

A. Plant Disease Recognition

Plant disease diagnosis is critical to the prevention of
spread of crop diseases and reduction of economic losses
in agriculture [1]. Most of traditional methods rely on
the molecular technologies [14], [15] that are complicated,
time-consuming and constrained to centralized laboratories.
Therefore, some works adopt traditional computer vision
methods for plant disease recognition, such as hyperspectral
image analysis [16], artificial bee colony algorithm [17], and
image segmentation [18]. Recently, there have been more
attempts to utilize deep learning in plant disease recog-
nition for its powerful capability of discriminative feature
learning [7]–[10]. For example, Wang et al. [10] finetuned
the VGG, ResNet50, and GoogleNet directly on the leaf
disease set and Ferentinos et al. [9] finetuned the AlexNet and
GoogleNet directly to identify 14 crop species and 26 diseases.
However, most of them directly extract deep features without
considering the characteristics of the plant disease image.
Besides, most of the works conduct their evaluations on
small-scale datasets. Table I summarizes the most common
plant disease and crop pest datasets. We can see that PlantVil-
lage Dataset [21] is the largest plant disease dataset, but only
contains 38 plant disease categories. In addition, the images
from this dataset are taken on the table, and not in the
real-world scenarios. We show some samples of these leaf
datasets in Fig. 4.

Different from these works, we systematically analyze the
problem of plant disease recognition and propose a multi-scale
method to reweight visual regions and the loss to emphasize
discriminative diseased parts for plant disease recognition
based on the characteristics of the plant disease image. Further-
more, we collect a large-scale plant disease dataset PDD271,
which not only has the advantage in data volume and category
coverage, but also is collected in real-world scenarios with
complex background (as shown in Table I and Fig. 4). In
particular, there is another agricultural dataset IP102 [24],
which is relevant to crop pest. This dataset contains more
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TABLE I

STATISTICS ON EXISTING PLANT DISEASE DATASETS

Fig. 2. Disease leaf image samples from various categories of PDD271 (one samples per category). The dataset contains three macro-classes: Fruit Tree,
Vegetable, and Field Crops.

than 75, 000 images belonging to 102 categories for insect
pest recognition. In contrast, PDD271 aims at advancing plant
disease recognition. We believe that PDD271 and IP102 are
very complementary and can jointly promote the development
of intelligent agriculture analysis and understanding in the
image processing and computer vision community.

B. Fine-Grained Visual Classification

Fine-grained image recognition aims to distinguish
sub-ordinate categories, such as birds and food. In the early
stage, researchers [25], [26] based on deep learning first
used strong supervised mechanisms with part bounding box
annotations to learn to attend on discriminative parts. Recent
researches [3], [13], [27]–[32] focused on weakly-supervised

recognition methods without high-cost object part locations or
attribute annotations. For example, Yang et al. [32] initialized
many anchors randomly and extracted their features as
their informativeness using the RPN method, and finally
chose the informative region to improve the classification
performance. There are also several attention-based methods
proposed for Fine-Grained Visual Classification. For example,
Hu et al. [33] used attention maps to guide the data
augmentation, Peng et al. [34] proposed the object-part
attention model to select discriminative regions subjecting to
the object-part spatial constraint, and SeNet154 [35] enhance
the recognition performance with spatial-channel attention.
However, attention-based methods probably focus on the
most discriminative parts while missing other parts for the
whole image.
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Fig. 3. Sorted distribution of image number per category in three
macro-classes of the PDD271.

Fig. 4. Examples from different datasets.

Plant disease recognition belongs to fine-grained recogni-
tion. However, we can not simply and directly use existing
fine-grained classification methods without considering the
characteristics of plant disease images. For example, as shown
in Fig. 1, in the plant disease recognition task, large intra-class
variations are caused by not only different poses, scales and
rotations, but also by different infected stages. In addition,
plant disease symptoms are usually not very salient in the plant
disease image. Hence, different from existing fine-grained
recognition methods, taking characteristics of the plant disease
image into consideration, we design a different fine-grained

recognition method via reweighting both visual regions and
the loss to emphasize the diseased parts for the plant disease
recognition. Our method is heuristic with many possibilities
to improve. For example, our method and attention-based
methods can work together in one framework to further
enhance the recognition performance, such as gate-attention
deep networks [36]. We can also conveniently combine our
framework with the spatial context through discriminative
spatio-appearance kernels [37] to promote the performance.

III. DATASET CONSTRUCTION

Due to the complexity, diversity and variability of plant
diseases, constructing a large-scale dataset with high-quality
is difficult. First, building agricultural datasets should resort to
many experts in different fields for annotation. For example,
annotating diseases on apple fruit trees and juglans need dif-
ferent experts, which is demand-specific and time-consuming.
Second, collecting plant disease images is extremely limited
by the time and location. For example, the pear black spot
occurs usually in May while the apple ring rot often occurs in
the Bohai Sea area. We have to arrive at the place of disease
in time. Otherwise all the work would be in vain.

In particular, the data construction is composed of the
following three steps. (1) Taxonomic System Establishment.
We establish a four-layer hierarchical taxonomic system for
the PDD271 dataset. We invite several agricultural experts and
discuss the common categories of plant diseases which exist in
daily life. Each disease is assigned an upper-level class based
on the plant that suffers from the disease. And each plant is
assigned an upper-level class based on planting condition and
plant morphology. For example, the apple brown spot spoils
the apple, and the apple belongs to the fruit tree. Finally,
we construct a structure with the dataset root, macro-classes,
plant categories and plant diseases with 1, 3, 43 and 271 nodes
in the first-layer, second- layer, third-layer and fourth-layer,
respectively. Fig. 5 shows the results of plant disease hierarchy
visualization. (2) Dataset collection. In order to collect large
numbers of disease images, we organize ten teams. Each team
consists of eight students from the agricultural university and
four experts in relevant fields. Each team collects thirty kinds
of diseases, where every disease contains over five hundred
different images from different plants. Experts are responsible
to guarantee the quality of disease images and their annotation.
When capturing images, one standard protocol is that the
distance between the camera and plant is in [20cm,30cm] to
guarantee similar visual scope. Every plant disease category
contains 500 images at least, and more than 200 plants are
captured for one category. In addition, one plant can be
captured from different angles. This is for the diversity of
plant disease data and this diversity is good for gaining higher
generalization power of networks. (3) Dataset processing and
expansion. After image collection, each image is checked by
three experts to make sure the label correctness. Then, experts
remove blurry images and other noisy images to keep the
dataset clean. For the categories with fewer images, we further
collect more images to guarantee the image number of each
category.
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Fig. 5. Taxonomy of the PDD271 dataset.

The whole data construction takes about 2 years. The result-
ing PDD271 contains 220,592 images and 271 categories.
As shown in Fig. 3, the minimum number of images per
category is over 400 and the maximum one is 2000. The
balanced distribution ensures the stability of model train-
ing. A reliable dataset plays an essential role in developing
image processing technologies in a specific area. For example,
HiEve [38] is vital to human-centric analysis, so as ATRW [39]
to wildlife conservation. Likewise, the proposed dataset
PDD271 offers a large coverage and diversity of plant dis-
eases. It will further the plant disease recognition agenda and
expand the image processing techniques into the agricultural
area.

IV. FRAMEWORK

In this section, we introduce the proposed framework which
explores a multi-scale strategy and reweights both visual

regions and the loss during the weakly-supervised learning to
emphasize discriminative diseased parts for the purpose of the
plant disease recognition. As shown in Fig. 6, this framework
mainly consists of three stages, namely Cluster-based Region
Reweighting (CRR), Training with Loss Reweighting (TLR)
and Weighted Feature Integration (WFI). CRR takes all the
divided patches from plant disease images as input and sets
the weight of each patch according to the cluster distribution
of the visual features of these patches. For each patch-label
pair, TLR allocates the corresponding weight to each loss
during weakly-supervised training in order to enable the
discriminative disease part learning. Based on extracted patch
features from TLR and corresponding weights from CRR,
WFI utilizes the LSTM network to encode the weighed patch
feature sequence into a comprehensive feature representation.
Section IV-A details CRR, Section IV-B introduces TLR and
Section IV-C presents WFI.
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Fig. 6. The proposed plant disease recognition framework.

A. Cluster-Based Region Reweighting

Many diseases present small and scattered lesions, such
as pumpkin mildew, pear frog-eye leaf spot and actinidia
brown spot. The deep convolutional neural networks trained
with image level labels often overlook these lesions while
focusing on more salient parts. Considering these situations,
we explore a multi-scale strategy by dividing the images into
non-overlapping patches and enlarging every patch to avoid
missing diseased patches. However, the disease-independent
patches, such as the complex backgrounds and the healthy
parts, are enhanced even more in the above process, which
could lead to severe unbalance between the diseased patches
and the irrelevant ones. To address this problem, we attempt
to use the visual similarity among the same disease to cluster
the patches of the same disease. Afterwards, we reweight
the patches based on the clustering result and indicate the
discriminative level of each patch.

Formally, all patches from all the original training images
form a new training set. Let X ∈ R

m×N denotes the visual
features of these patches, where m is the dimension of the
visual feature and N is the number of training patches. We then
have these patches clustered into k cluster classes c with
their centroids being {μ1, μ2, . . . , μk} ∈ R

m . To compute the
weight wx , x ∈ X , the weights of the clusters wc and the
probability distribution px of x belonging to over all clusters
are computed. Then, wx is computed as

wx = px · wc, (1)

where wc = [wc1, . . . , wci , . . . , wck ] and wci denotes the
weight of the cluster ci .

Normally, the patches containing similar visual symptoms
are likely to be assigned to the same clusters. In case of small
distance among clusters, the visual phenotypes of different
diseases are similar and hard to distinguish by the deep model.
Therefore, these clusters are given higher weights to enhance
their influence in follow-up feature learning and integration.
The size of cluster is also an important indicator. There is
a highly skewed distribution of different disease patches. For
example, the number of non-diseased patches containing com-
plex backgrounds and foliar healthy parts is very large, but the
number of patches containing cotton eye spot disease is small
due to the concentrated symptom of this disease leading to
the poor classification performance. Meanwhile, the distance
between two clusters indicates their visual difference. If one
cluster is far from the other clusters, we can easily obtain
discriminative features for this cluster, thus assign a small
weight to it. Hence we assign these clusters suitable weights
to make their influences as balanced as possible.

Given all these, we assign the cluster weights according
to the following rule: the larger size the cluster and the
farther away from the others, the smaller its weight. We use
a monotone decreasing function F = ex/(x−1) to model this
change. According to the size of the cluster and the distance
distribution among the cluster centroids, we compute the
weights of the cluster ci as follows,

wci = F(Nci ) × F(
∑

j �=i, j∈1,...,k

d(μi , μ j )), (2)

where Nci is the number of patches in cluster ci and d(μi , μ j )
is the distance between the centroid μi and μ j .
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To compute the probability distribution px, we use a soft
assignment strategy based on the distances between a patch
and the cluster centroids. The assignment probability distrib-
ution px is computed as following,

px = F(d(x, μi )), i ∈ 1, . . . , k. (3)

The weight wx is then computed using Equation 1.
For the patches from validation and testing datasets,

we compute the probability distributions px based on the
distance to the centroids learned from the training patches. The
cluster weights have been computed and the patch weights are
computed via Equation 1. The patches and their corresponding
weights are used for the model training with loss reweighting.

B. Training With Loss Reweighting

To extract more discriminative regional features for the
given patches, we train the network with a reweighted
loss function. An observed input patch x shares the same
label l with the original image. The model computes an
observation o for this patch. The score can be interpreted
as an estimation of a class posterior probability pθ (o|x),
where θ is the model parameters. Given labeled training data
{(xn, ln) : n = 0, . . . , N − 1}, the original cross-entropy loss
is defined as:

Lossori (xn, ln; θ) = −
N−1∑
n=0

M∑
l=1

yon,ln log(pθ (on|xn)) (4)

where M denotes the number of plant disease classes, and y
is one binary indicator defined as follows:

yon,ln =
{

1 on = ln

0 on �= ln
(5)

However, this loss treats every patch equally. As a result,
patches irrelevant to the disease symptoms distract the opti-
mization of network. To solve this, we propose a new
reweighted loss to enhance the influence of patches with dis-
criminative diseased symptoms and to reduce the interference
of irrelevant patches. For the observed input patch x , its weight
wx is precomputed via CRR. Given labeled training data{
(xn, wxn , ln) : n = 0, . . . , N − 1

}
, we define the reweighted

loss function as follows:
Lossrew(xn, wxn , ln; θ)

= −
N−1∑
n=0

M∑
l=1

wwn yon,ln log(pθ (on|xn)). (6)

We allocate the weight to each loss for each patch-label
pair. This loss forces the model to focus on the patches
with discriminative diseased parts and to ignore the irrelevant
patches as much as possible. This trained model can be used to
extract visual features from all the patches. The patch features
from the same image form a sequence as the input for the
following weighted feature integration. For clarity, x̂ denotes
patch feature from the same image.

C. Weighted Feature Integration

The combination of diseased and healthy patches in plant
images constitutes the complex and diverse visual patterns.
We try to model the semantic correlation from the combination
of local patches. Specifically, we propose a feature integration
model with reweighting patch features as the inputs to induce
the BiLSTM network to model the semantic correlativity
among patches by end-to-end training.

Given a feature sequence S = [x̂1, . . . , x̂t ] extracted from
the network with TLR and its corresponding weight sequence
W = [ŵ1, . . . , ŵt ] obtained from CRR, where t denotes the
number of patches for one image, we combine the feature
sequence with the weight via a following function A(S, W ),

A(S, W ) = [ f (x̂1, ŵ1), . . . , f (x̂t , ŵt )]. (7)

Note that the function A(S, W ) can be one of many aggre-
gation methods, such as deep feedforward networks. Without
loss of generality, the element-wise multiplication is adopted
in our experiment.

For each image, a common two-layer stacked LSTM is
adopted to fuse weighted patch feature sequences into the final
representation. The hidden state of the first LSTM is fed into
the second LSTM layer which follows the reversed order of the
first one. The dimension of hidden states from both layers is
4,096. The output o� = L(A(S, W ); θ �), where θ � is the model
parameters. We use softmax to generate the class probability
vector for each image Si � , denoted as φ(L(A(Si � , Wi � ); θ �)) ∈
R

M×1. The final loss function is defined as follows:
Losslstm(Si � , Wi � ; θ �)

= −
N
t −1∑
i �=0

M∑
l=1

yo�
i� ,li�

log(φ(L(A(Si � , Wi � ); θ �)). (8)

By optimizing this loss function, we obtain a weighted BiL-
STM to encode the patch feature sequence into a comprehen-
sive feature representation for plant disease recognition.

V. EXPERIMENT

A. Experimental Setting

1) Dataset Split and Evaluation Metric: The PDD271 con-
tains 220,592 images belonging to 271 classes of diseases.
We follow a roughly 7: 2: 1 split. The PDD271 is split into
154,701 training, 44,002 validation, and 21,889 testing images.
Top-1 classification accuracy is adopted as the evaluation
metric.

2) Hyperparameter Setting: All the images are resized to
224 × 224. Each image is divided into 4 × 4 patches. The
initial learning rate is 0.001 and is divided by 10 after
every 20 epochs with the standard SGD optimizer. Training
converges after 100 epochs. The batch size is 128, and
the momentum is 0.9. We adopt a random horizontal flip
method for data argumentation in all the experiments. Our
project will be made available at https://github.com/liuxindazz/
PDD271https://github.com/liuxindazz/PDD271.
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Fig. 7. The result of elbow method. The blue line shows that the SSE changes
with the K , and the orange line is the MA line.

Fig. 8. The percentage distribution results from ten experiments.

B. Experiment on PDD271

1) The Choice of K in CRR: There are many notable cluster
algorithms, such as Gaussian mixture model and K-means
clustering. Considering the very large size of the dataset and
the robustness of the algorithm, we chose the K-means++
as the cluster algorithm on all our experiments. We used
the ‘elbow’ method to determine the value of K . As shown
in Fig. 7, from the sum of the squared errors (SSE) and the
trend line of SSE computed by the Moving Average (MA)
method, we can obtain the obvious ‘elbow’ point in where K
is 240.

We repeat the clustering procedure 10 times in Fig. 8,
and observe that the distributions of these clustering results
are similar and stable, quantificationally indicating that the

Fig. 9. The t-SNE visualizations of the result of K-means clustering(randomly
choosing five cluters).

TABLE II

PERFORMANCE COMPARISON FOR DIFFERENT TRAINING METHODS

clustering is converged in this dataset. Furthermore, Fig. 9
shows the t-SNE [40] map of clustering with patch samples
in random five clusters to support the clustering results qual-
itatively.

2) Evaluation of TLR: We used the following comparison
for evaluating TLR.

• ResNet152. This method directly finetunes
ResNet152 using the whole image.

• w/o WSL. This method uses the finetuned ResNet152
to directly extract the feature of each patch following
the maxpooling and softmax layers. ‘w/o WSL’ means
‘without weakly supervised learning’.

• w/o Weights. This method first uses the patches from all
the images to finetune ResNet152, and then extract the
feature of each patch following maxpooling and softmax
layers. ‘w/o Weights’ means ‘training on patches without
weights’.

Table II shows the experimental results. We can see that
(1) w/o WSL brings a drop of performance. The probable
reason is that the information about backgrounds or healthy
parts is harmful for predicting disease categories and blocking
into patches exacerbates the influence of the information.
(2) Training on patches without weights improves the recog-
nition performance compared with ResNet152. It showes that
weakly-supervised learning is effective for this task. (3) TLR
gives further performance boost in both the validation set
and the testing set, which demonstrates the advantage of loss
reweighting in emphasizing diseased parts. (4) Due to the
complexity, diversity, and variability of plant disease, it is
hard to improve the recognition performance dramatically.
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TABLE III

PERFORMANCE COMPARISON FOR INTEGRATION METHODS

TABLE IV

ABLATION STUDY ON THE PDD271

However, the proposed TLR still gives a considerable improve-
ment compared to the results of other competitive baselines.

3) Evaluation of WFI: We evaluated the effect of LSTM
and its variants including BiLSTM and sumBiLSTM for
integration of patch feature sequence without reweighting.
In contrast, the input of WFI is the weighted patch feature
sequence. As shown in Table III, the proposed WFI achieves
the best recognition performance, and benefits significantly
from the feature reweighting strategy.

4) Ablation Study: We further evaluated the effect of
each component in our framework: CRR, TLR, and WFI.
We designed different runs in the PDD271 datasets as follows.

• w/o CRR. In this baseline, we directly use the trained
network to extract patch features, and then fuse these
feature via BiLSTM.

• w/o TLR. In this baseline, we replace the reweighted
loss with the original loss during the weakly-supervised
training in our framework.

• w/o WFI. In this baseline, WFI is replaced with the
Maxpooling layer in our framework.

As can be seen from the Table IV, (1) Any one of three com-
ponents in isolation brings disease recognition performance
gain; (2) Without TLR, the performance drops to 89.23%,
showing that TLR is crucial in improving the performance.
(3) Without CRR, the performance in testing set drops to
84.87%, indicating that CRR enhances the robustness of our
framework. The ablation study validates our design is rational
that it is necessary to jointly adopt three components in order
to achieve the best performance.

5) Comparisons to the State-of-the-Art: For further verifica-
tion for the proposed method, we compare our method against
the state-of-the-art deep network architectures and fine-grained
recognition models, as shown in Table V. The results show that
(1) The performance of the SeNet154 is better than other single
networks, since it can obtain the useful disease information
with spatial-channel attention. (2) Our method can improve the
performance of the Resnet152 by 1.28% without adding any
attention modules. In addition, we also change the backbone
network from Resnet152 to attention model SeNet154. The

TABLE V

COMPARISON WITH THE RESULTS FOR STATE-OF-THE-ART DEEP
NETWORK ARCHITECTURES AND FINE-GRAINED

RECOGNITION MODELS ON PDD271

TABLE VI

PERFORMANCE COMPARISON FOR DIFFERENT PATCH SIZES.4 × 4 MEANS

THE IMAGE IS DIVIDED INTO 4 × 4 PATCHES, AND THE
SIZE OF EACH PATCH IS 56 × 56 PIXELS

experimental results also show that combining our method
with SeNet154 improves performance by ∼1 percent in testing
(from 84.63% to 85.58%) and achieves the state-of-the-art
performance. This phenomenon further demonstrates that our
method and attention-based methods can work together in one
framework to futher enhance the recognition performance. (3)
Overall, our method performs better than the state-of-the-art
fine-grained methods, including the attention-based method
WS-DAN [33] and the patch-based methods NTS-NET [32]
and DCL [41]. This phenomenon shows that our method is
more appropriate for plant disease recognition with consider-
ing the characteristics of plant disease image.

6) Influence of Different Patch Size: The size of patches
is a important factor to avoid missing diseases, therefore
we consider evaluating the influence of different patch size.
We divide each image into 2 × 2, 3 × 3, 4 × 4 patches,
respectively. Considering the computational complexity and
the receptive field, we do not verify the smaller patch size.
The result is shown in Table VI.

7) Influence of Different Patch Order: To evaluate the
influence of different patch order, we compare the different
orders of the patch feature squence in Table VII. We observe
that the performances for the different fixed orders are almost
the same. The certain different order of the patch list does not
matter for the final prediction. The most surprising aspect of
the data is that the random unfixed order is much better than
others. A possible explanation for this might be that the plant
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Fig. 10. Qualitative results. From top to bottom, (a) the original image with annotating diseased parts by red boxes, (b) the feature map from the last
convolution layer of VGG16, (c) the feature map from the last convolution layer of ResNet152, (d) the feature map from the last convolution layer of
SeNet154, (e) visualisation of the proposed CRR weights for each patch. The red means high weights and the blue means relatively low weights. For the best
view, we only visualize the weights which are bigger than 0.75. CRR can consider more regions and obtain more characteristics.

TABLE VII

IMPACT OF ORDERS. THE ‘T’, ‘B’, ‘L’, AND ‘R’ DENOTE THE TOP,
BOTTOM, LEFT AND RIGHT, RESPECTIVELY. THE ‘T2B,L2R’ MEANS

THE PATCHES FROM EACH IMAGE ARE ORDERED FROM TOP
TO BOTTOM AND LEFT TO RIGHT. THE ‘RD’ DENOTES THE

RANDOM ORDER. THE ‘FIXED’ DENOTES THAT THE ORDER

OF THE PATCH LIST FOR EACH IMAGE IS FIXED, AND

THE ‘UNFIXED’ DENOTES THAT THE ORDER OF THE
PATCH LIST FOR EACH IMAGE IS UNFIXED

is diseased no matter where the lesions appear in. Another
possible explanation is that the uncertain order is likely to
enhance the power of networks.

8) Visualization: We visualize different emphasized parts
in different methods via gradient-weighted class activation
heatmap [49]. Fig. 10 shows the visualization results of some
typical deep architectures, such as VGG16 and ResNet152.
The reweighted maps of the proposed cluster-based region
reweighting strategy are shown in Fig. 10 (d), where we only
visualize the weight of the patch x when wx ≥ 0.75.

Compared with feature maps from typical deep networks,
we can find that the proposed reweighted maps can cover more
discriminative regions. The VGG16 and ResNet152 probably
focus on disease-irrelevant regions, and meanwhile ignores
some useful information. Our approach can pay attention
to multiple scattered regions, which is more appropriate for
plant disease recognition. The visualization results of the
PDD271 further demonstrate the effectiveness of the proposed
cluster-based reweighting strategy.

In addition, we further show the confusion matrix of our
method on the PDD271 in Fig. 11, where the vertical axis
shows the ground-truth classes and the horizontal axis shows
the predicted classes. Yellower colors indicate better perfor-
mance. We can see that our method still does not provide per-
fect performance for some plant disease categories. We enlarge
specific regions to highlight the misclassified results and show
some samples from confused categories. We can see that these
plant disease categories are very similar in visual appearance
and texture. Even the humans do not easily distinguish among
these disease categories. The probable solution is to design
more fine-grained visual feature learning methods or use
multi-source information from different sensors to classify
these plant disease categories.

C. Experiment on PlantVillage Dataset

Besides the PDD271, we also conduct the evalua-
tion on another publicly available benchmark datasets, the
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Fig. 11. Confusion matrix of our method on the PDD271.

TABLE VIII

PERFORMANCE COMPARISON OF METHODS ON PLANTVILLAGE

PlantVillage dataset, to further verify the effectiveness of our
method. The PlantVillage dataset contains 38 plant disease
categories and a total of 54,309 images. It is split following
the setup in [12], 80% of the dataset is used for training and
20% for validation. All the methods have good performance
as shown in Table VIII, because all the images are shot on the
table.

VI. CONCLUSION AND FUTURE WORK

Plant disease recognition is an interesting and practical
topic. However, this problem has not been sufficiently explored
due to the lack of systematical investigation and large-scale
dataset. The most challenging step in constructing such a
dataset is providing a reasonable structure from both the
agriculture and image processing perspective.

In this paper, we systematically investigate the problem of
plant disease recognition in the community of image process-
ing. With the help of agriculture experts, we construct the
first large-scale plant disease dataset with 271 plant disease
categories and 220,592 images. Furthermore, we present a
plant disease oriented framework for plant disease recognition
based on their distinctive characteristics. We design a strategy
to compute patch weights based on the cluster distribution
of patch features and then use learned weights to reweight

both patch features to highlight diseased patches and the loss
to guide the model optimization. Qualitative and quantitative
evaluations on the PDD271 and PlantVillage datasets demon-
strate the effectiveness of the proposed method. Nevertheless,
a limitation of our method is that the proposed method is a
little slow due to adding the clustering process before training.
We will try to accelerate our method in the future. Another
interesting work is analyzing the impact of the random unfixed
order of patches. The random unfixed order enhances the
performance, which may seem counterintuitive at first glance.
Additionally, we can further consider a more advanced variant
of LSTM as the alternative to the conventional LSTM, such as
SFMRNN [51] and H-LSTCM [52]. Besides, a further study of
the imbalanced problem between disease and healthy classes
of image patches could assess the long-term effects. Hard
sample mining [53] and hard triplet generating [54] could be
more efficient and accurate.

The study on the visual plant disease recognition is still
at the initial stage. How to discover discriminative diseased
regions more efficiently and accurately remains an open ques-
tion for further investigation.
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